Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1211). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1994). CAD-4 Express. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Metz, P. & Hungerhoff, B. (1996). GIT Fachz. Lab. 40, 690–691.
- Metz, P. & Hungerhoff, B. (1997). J. Org. Chem. 62, 4442–4448.
- Metz, P. & Linz, C. (1994). *Tetrahedron*, **50**, 3951-3966, and references therein.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1657-1658

3-(o-Carboxyphenyl)-1-methyltriazene 1-Oxide†

Chitra Samanta,^{*a*} Sailesh C. Saha^{*b*} and Alok Kumar Mukherjee^{*a*}

^aDepartment of Physics, Jadavpur University, Calcutta 700 032, India, and ^bDepartment of Chemistry, Jadavpur University, Calcutta 700 032, India. E-mail: sspmm@iacs. ernet.in

(Received 27 March 1997; accepted 29 April 1997)

Abstract

The structure determination of the title compound, $C_8H_9N_3O_3$, establishes the *N*-oxide form of triazene. The overall molecular planarity and trigonal planar geometry of the triazene N atom bonded to the phenyl ring suggest a resonance interaction extending over adjacent atoms. The molecular conformation is stabilized by intramolecular hydrogen bonds and the crystal packing by intermolecular hydrogen bonds.

Comment

Substituted triazenes increasingly find applications as initiators of radical polymerization (Rapta et al., 1996),

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved as efficient chelating agents (Saha, Chakraborty, Roychaudhuri & Maji, 1992) and as antitumor drugs (Wilman, 1988). As part of our studies on the synthesis and characterization of triazene 1-oxide derivatives and to build up a hierarchy for such systems, the structure determination of 3-(o-carboxyphenyl)-1-methyltriazene 1-oxide, (I), was undertaken.

The results of the present X-ray analysis are in agreement with those of analyses of corresponding substituted phenyltriazene 1-oxide structures (Sarkar, Khalil, Saha & Talapatra, 1983; Samanta, De, Sarkar, Saha & Talapatra, 1985) and establish the tautomeric N-oxide form of triazene (Smith et al., 1992). Torsion angles close to 0 and 180°, and the r.m.s deviation of 0.051 Å from the least-squares plane through the non-H atoms illustrate the overall molecular planarity. The essentially planar phenyl moiety and trigonalplanar geometry of the triazene N1 atom strongly suggest a resonance interaction extending over the C6, N1, N2 and N3 atoms. The short N2-N3 distance [1.263 (2) Å] indicates double-bond character and the N1-N2 distance [1.323(2)Å] is shorter than a pure single bond. The deviation of O3 [0.122(1) Å] from the molecular plane causes conjugation between N3 and C8 to be less effective and is reflected in the longer N3---C8 bond length [1.459(2)Å] compared with the N1-C6 distance [1.390(2)Å].

The almost planar conformation of the molecule is a result of intramolecular hydrogen bonding; there are two N—H···O interactions and two C—H···O interactions (see Table 2). Three of the resulting four pseudo-rings

Fig. 1. ORTEPII (Johnson, 1976; Zsolnai, 1995) view (50% probability level) of the molecule showing the atom-labelling scheme.

Acta Crystallographica Section C ISSN 0108-2701 © 1997

[†] Alternative name: o-(3-methyl-2-triazeno)benzoic acid N^3 -oxide.

are fused with the benzene ring. The crystal packing is stabilized by intermolecular hydrogen bonds. The molecules are joined via O2...O3, forming infinite hydrogen-bonded chains.

Experimental

The title compound was prepared according to the procedure of Majumdar, Bhattacharyya & Ray (1971). Suitable single crystals were obtained by slow evaporation from ethanol solution.

Crystal	data
---------	------

$C_8H_9N_3O_3$	Mo $K\alpha$ radiation
$M_r = 195.18$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_{1}/c$	reflections
a = 6.681 (3) Å	$\theta = 8 - 16^{\circ}$
b = 8.362(1) Å	$\mu = 0.110 \text{ mm}^{-1}$
c = 16.707 (2) Å	T = 293 (2) K
$\beta = 97.01(5)^{\circ}$	Prism
$V = 926.4 (4) \text{ Å}^3$	0.5 $ imes$ 0.4 $ imes$ 0.3 mm
Z = 4	White
$D_x = 1.399 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection

Enraf-Nonius CAD-4 $R_{\rm int} = 0.010$ $\theta_{\rm max} = 24.95^{\circ}$ diffractometer $h = 0 \rightarrow 7$ ω -2 θ scans $k = 0 \rightarrow 9$ Absorption correction: none 1527 measured reflections $l = -19 \rightarrow 19$ 3 standard reflections 1401 independent reflections 1158 reflections with every 100 reflections $I > 2\sigma(I)$ intensity decay: <2%

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0875P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = -0.066$
$\Delta \rho_{\rm max} = 0.166 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.193 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Гab	ole	1.	Sel	lected	geometric	parameters	(A, '	°)
-----	-----	----	-----	--------	-----------	------------	-------	----

01—C7	1.210 (2)	C1—C6	1.391 (2)
02—C7	1.324 (2)	C1—C2	1.394 (2)
O3—N3	1.288 (2)	C1—C7	1.477 (2)
N1N2	1.323 (2)	C2—C3	1.373 (3)
N1-C6	1.390 (2)	C3—C4	1.361 (3)
N2—N3	1.263 (2)	C4C5	1.374 (2)
N3—C8	1.459 (2)	C5—C6	1.399 (2)
N2—N1—C6	120.30 (15)	C2-C1-C7	120.30 (15)
N3—N2—N1	112.28 (14)	N1-C6-C1	120.13 (14)
N2N3O3	123.03 (13)	C1-C6-C5	119.93 (15)
N2—N3—C8	118.24 (15)	O1-C7-O2	121.56 (15)
O3—N3—C8	118.71 (14)	O1-C7-C1	124.86 (14)
C6—C1—C7	121.42 (13)	O2—C7—C1	113.58 (13)

C2-C1-C7O2	1.8 (2)	C7—C1—C6—C5	177.2 (2)
C6-C1-C7O2	-177.47 (15)	N2-N1-C6-C1	- 179.80 (14)
C2-C1-C7-01	-177.6 (2)	C6-N1-N2-N3	175.06 (13)
C6-C1-C701	3.1 (3)	N1-N2-N3-O3	0.8 (2)
C7-C1-C6-N1	-2.8(2)	N1—N2—N3—C8	179.2 (2)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	D — $H \cdot \cdot \cdot A$
N1—H6···O3	0.82 (2)	2.10 (2)	2.471 (2)	108 (2)
N1—H6···O1	0.82 (2)	2.03 (2)	2.645 (2)	131 (2)
C2—H1···O2	0.95 (2)	2.38 (2)	2.710 (2)	100 (1)
C5—H4· · ·N2	0.96 (2)	2.44 (2)	2.756 (3)	99 (1)
O2-H5···O3 ¹	0.90 (3)	1.76 (3)	2.643 (2)	165 (2)
C8-H7···O3 ⁱⁱ	0.91 (3)	2.40 (3)	3.299 (3)	168 (2)
Symmetry codes: (i)	$1 - x, y - \frac{1}{2}$	$\frac{1}{2}, \frac{3}{2} - z;$ (ii)	$2 - x, \frac{1}{2} + y$	$y, \frac{3}{2} - z.$

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1995) and NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989). Software used to prepare material for publication: SHELXL93.

The authors wish to thank Professor S. Sarkar, Department of Chemistry, Indian Institute of Technology, Kanpur, India, for providing the X-ray diffractometer data.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1193). Services for accessing these data are described at the back of the journal.

References

- Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. & Woolfson, M. (1988). A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Majumdar, A. K., Bhattacharyya, B. C. & Ray, B. C. (1971). Anal. Chim. Acta, 57, 425-428.
- Rapta, P., Omelka, L., Stasko, A., Dauth, J., Deubzer, B. & Weis, J. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 255-261.
- Saha, S. C., Chakraborty, P. K., Roychaudhuri, N. & Maji, S. (1992). Indian J. Chem. 31A, 260-264.
- Samanta, C., De, P. K., Sarkar, S. B., Saha, S. C. & Talapatra, S. K. (1985). Acta Cryst. C41, 142-144.
- Sarkar, S. B., Khalil, Md., Saha, S. C. & Talapatra, S. K. (1983). Acta Cryst. C39, 1075-1076.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Smith, R. H. Jr, Wladkowski, B. D., Herling, J. A., Pfaltzgraff, T. D., Pruski, B., Klose, J. & Michejda, Ch. J. (1992). J. Org. Chem. 57, 654-661.
- Wilman, D. E. V. (1988). Cancer Treat. Rev. 15, 69-72.
- Zsolnai, L. (1995). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.